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Abstract. For neural networks with rfrJ couplings the perceptron problem for 
random unbiased patterns is considered. An algorithm that uses concepts of the 
continuous perceptron problem as well as ideas of biological optimization is proposed 
and investigated. The distribution of local stabilities and the critical storage capacity 
a, are determined. While for N less than w 50 the value of a, is approximately 0.83, 
the storage capacity goes down to a, w 0.7 for N = 255. 

Neural networks with two-state neurons Si = f l  have been analysed with the methods 
of statistical mechanics [l]. They can be used as distributed memories with associative 
abilities. Retrieval of information is a dynamical process, where in the simplest case 
this has deterministic dynamics defined by a sign transfer function: 

Information is sto:ed during learning in the synaptic couplings J i j .  In attractor 
neural networks] the task is to find synaptic couplings J i j  such that a given set of 
configurations or patterns <f = f l ,  i = 1,.  . . , N and p = 1 , .  . . , p  are attractors of 
the network. Given the above dynamics the patterns are stationary states if and only 
if 

Er = N-'12<f Jij<! 2 U > 0 (2) 
j ( P i )  

for every i = 1,. . . N and p = 1,. . i , p .  In feed-forward networks the task is to find 
the right output configuration to a given input. In this case <[ denotes the state of 
one output neuron and {[f} (i # j )  its input neuron states. A set of couplings { J i j } ,  
which satisfies (2) for every i and p is called a perceptron solution. If the neurons Si 
take the values of one of the patterns, the system is stable under zero temperature 
dynamics. So the given patterns are attractors of the system. 

For simplicity only unbiased and randomly chosen patterns will be considered. 
For the case of arbitrary valued couplings J with spherical constraint Cj J$ = N ,  
Gardner [2] calculated the greatest possible stability mini,fi E/ for given (Y = p / N  in 
the limit of large N ;  the maximum storage capacity limN" p,,,/N is determined 
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by ac = 2 [3]. Algorithms capable of producing optimal stability and of reaching the 
maximum possible storage capacity are known: the MinOver algorithm [4] is the most 
well known, while the AdaTron [5] is the fastest algorithm so far developed. 

The case of binary couplings, taking only the values J or - J ,  is less well under- 
stood. The calculation of the maximum storage capacity in the thermodynamic limit 
N ---* oc requires a solution with replica symmetry breaking (RSB) [6]. Krauth and 
Mkzard [6] find a phase transition in one step RSB at a = 0.83. At The same value 
of a the entropy of the replica symmetric solution turns negative. With a complete 
enumeration of all possible configurations for small systems ( N  5 25) a critical storage 
capacity of a, = 0.82 is found [7]. 

For binary couplings all learning rules that clip arbitrary valued coupling matrices 
to their sign, like the clipped Hopfield matrix 

P 

and others like a clipped pseudo-inverse or a clipped optimal perceptron matrix do 
not stabilize the patterns exactly. One finds attpsctors that are strongly correlated 
with the patterns, but their overlap with those patterns is less than 1 when cy is not 
zero. The same problem occurs with an algorithm that finds a coupling matrix by 
minimization of a quadratic form [8], although a higher storage capacity is possible 
(6, M 0.4 compared to 0.1 for clipped Hopfield [9] and 0.3 for clipped pseudo-inverse 
and clipped optimal perceptron [8]; GC is defined as the greatest possible number of 
attractors with a macroscopic overlap with the patterns divided by N ) .  Amaldi and 
Nicolis [lo] propose tho algorithms for the problem; one uses simulated annealing and 
the other so-called ‘tabu’ search. They apply their algorithm to systems with N 5 81 
with the result 0.55 < a,(N = 81) < 0.66. 

The aim of this letter is to present an algorithm that produces f l  coupling matrices 
that stabilize patterns for much larger systems with higher storage capacities. Since 
the problem can be interpreted as a special integer optimization task, it is believed 
to be NP-complete. The optimal configuration can not be found in polynominal time, 
so approximate techniques are needed. For the purposes of learning it is sufficient 
to regard only one output neuron, so that the coupling matrix can be reduced to  
a coupling vector J. ---* Jj. In attractor nets the patterns need to be rescaled for 

any $‘ = f l  with </ = q f i t / .  

with a cost function, for example 

neuron i as </ = ti 2 while for feed-forward nets the patterns can be mapped on 

The simplest possible way of constructing a coupling matrix is by optimization 

31 = N-’  c(X - E”)20(X - E”)  (4) 
Y 

A local minimum is found with methods of steepest descent or simulated annealing. 
In (4) 0 denotes the Heaviside function. Preliminary simulations show that the square 
in (4) should not be left out and that much higher exponents or exponential cost 
functions, which take ( A  - E”) in the exponent, are not appropriate. A cost function 
with exponent 1 or 0 does not take diffusion effects into account. For E < X - 2 / f i  
one step to smaller field values compensates for one to greater field values. At the end 
the system is caught in a local minimum of its energy landscape with many of the E[ 
having values far below A.  On the other hand diffusion should not be penalized too 
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much, because the system would be trapped too early (after one Monte Carlo step in 
zero-temperature optimization with an exponential cost function). During simulations 
with (4) and simulated annealing for N up to 99 the storage capacity could not be 
raised systematically above 0.6, although higher values for the capacity were observed 
for smaller N .  

Much better results could be achieved with an algorithm that is split in two parts: 
an adaptive part, which is embedded in a framework of a genetic optimization program 
that searches a wider part of the phase space. In the first part patterns are adaptively 
stabilized towards stability A, but only if the pattens are not yet well learned. As 
a measure of how much (more) pattern p needs to be embedded, I calculate Sd-’ = 
(A - EP))8(A - E’’). For continuous couplings Jc this would require the modification 
J;(t+ 1) = J;(t)+C!6zP. Since the J-vector can only be changed in steps, by altering 
the sign of one or more of its entries, the influence of all patterns must be taken into 
account simultaneously. In order to have an absolute measure S I j ,  how much every 
synapse would need to be changed, and which is independent of the individual signs, 
the sum over the necessary modifications is multiplied by - Jj : 

Then all those J. that are worst in the sense that SIj have the greatest positive value, 
shall be flipped (couplings Jj with negative SIj are not flipped). Usually there is more 
than just one flip necessary, because the E’’ and the SIj are quantized in steps of 
2 / f i .  To be more precise, the set of Ji that will be flipped in one time step is given 
by 

T = { J i I ( i 1 6 1 i = m ~ 6 1 j A 6 1 i > 0 ) }  J V i , j = l ,  . . . ,  N .  (6) 

Starting from some initial configuration, T is repeatedly calculated and the corre- 
sponding spins are flipped, until a solution is found, or a maximum number of it- 
erations is exceeded, or the system is caught in a cycle. This algorithm cannot be 
described by a cost function, which is minimized. The system is not a Hamiltonian 
system and consequently cycles appear. The resulting configuration of J can not be 
expected to  be a linear combination of the patterns as in adaptive learning rules for 
continuous couplings, where J; = N - ’  E, z”</. Furthermore, there is no guarantee 
that one of the configurations of the J-vector within one cycle is better than the pre- 
vious one. So in the computer realization all configurations were stored, while it was 
checked first to  see if the new configuration had occured before; this was done with 
the help of hash-coding techniques. In that case the algorithm was stopped and the 
best configuration found so far was kept. The result of this process depends of course 
on the start configuration used. For that reason simulations were done for a set of M 
different start vectors (for simplicity M = N ) .  One of them was a clipped Hopfield 
vector, while the others were chosen at  random with equal propability for +1 and -1. 
There was no evidence that the clipped Hopfield vector behaved any better than the 
other start configurations. 

Now I describe the genetic part of the algorithm. After all M vectors had passed 
through the first part of the algorithm, they were sorted according to their stability 
n(k) = min, E”(k) ,  k = 1,. . . , M .  In the next step the first (the best) vector and the 
second were crossed as if the J-vectors would represent a genetic code (see figure 1) to 
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Figure 1. Creation of a new J-vector for optimization in the adaptive part of the 
algorithm from two vectors of the last generation. 

f - - - + vg/g/g/g 

produce a new vector, which brings the system out of the cycles that it was in before. 
Vector number one and three form the next new vector, then one and four, two and 
three and so on, so that the sum of the numbers is monotonously increasing. The 
vectors were sectioned at random cutting points, so that the average length 1 of the 
pieces was 1 IX N .  In fact, the scaling factor does not have a significant meaning in 
this model, as could also be seen in the simulations, because there is no relation of 
spatial order in the system; the output neuron is coupled with all the other neurons. 
The crossing over, or the mixing of the vectors, could have been done just as well 
differently. When M new vectors were created, they were used as start configurations 
for the first (adaptive) part of the algorithm. This method of pushing the system out of 
cycles or metastable states is clearly better, than a random tip as used in optimization 
with simulated annealing; the phase space is not smooth as a consequence of RSB and 
the fact, that the mean overlap of two solution vectors a t  a, is Q M 0.5 [6]. Instead 
of some small steps of hill climbing in random directions, bigger steps are taken in 
directions given by some evolutionary pressure, caused by the selection of only the 
best J-vectors. 

e-0 c - 1  
%$-+ <G>=4 

1 
I 

-e 

I", 
/ ~ " 1 ' ' " 1 ' " I ' ' " ~ " " " ' ' '  

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 
E 

Figure 2. Field distributions of all members of a generation, after one generation and 
after the algorithm has stopped. The distributions are averaged over 400 independent 
runs of the algorithm with independent patterns and start configurations for N = 127 
and a = 0.6. 

The adaptive and the genetic part of the algorithm must be iterated several times 
until the minimal field value of one of the configurations ~ ( k )  = A, or most of the 
vectors (90%) have the same n(k) < A,  or a maximum number of iterations is exceeded; 
here 50 (or 60 for N = 255) were enough for at least 70% of all trials to be within that 
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limit. Let us say that one ‘generation’ G is completed whenever the adaptive part has 
finished. 

All simulations were done for desired stability X = 0, odd N and M = N (an odd 
N permits no EP(k) = 0). In figure 2 I have plotted the field distribution of E P ( k )  
for all k = 1,. . . , N and p = 1 , .  . . , p  after one generation G and after the algorithm 
has found one configuration with K > 0. The distribution was averaged over 400 runs 
of the program with one set of patterns and one set of start configurations in each 
run. On the average it took 4.0 generations to find a solution vector. System size N 
was 127 and a = 0.6. Due to the genetic optimization the distribution shifted to the 
right and the skewness increased. Much simulation work was done for determining the 
critical storage capacity ac. In figure 3(a)  the maximum K of one generation averaged 
over many runs for six values of N from 49 up to 255 and a E [0.65,0.9]. For N = 49 
averaging was possible over 1000 samples, while for N = 255 not more than 60 systems 
could be simulated. The error for all data points is of the size of the symbols or less, 
except for N = 255, where an error bar is shown. The data of a given N are connected 
with spline interpolations to determine a , ( N )  as the intersection with K: = 0. 

K 

0.65 0.70 0.75 0.80 0.85 0.90 
a 

0.05- \ n 
\- \ I  

: a  
- O . l O l ,  , , ; ,  1 ,  , ~ , , ,  I ~ 1 ’ ’ ~ 

0.50 0.60 0.70 0.80 
a 

Figure 3. ( a )  Best A of a generation at the end of the optimization progsm, av- 
eraged for N = 49,63,101,127,191, 225 over 1000,600,500,300,100,60 indeperr 
dent m. The intersection points of the linea with A = 0 determine a c ( N ) .  ( b )  Best 
A of a generation afte.: one pass through the adaptive optimization, averaged for 
N = 49,63,101,127,191 over 500, 300,200, 200,50 independent runs. 
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Figure 4. 
3(6) (crosses) plotted against N - ' .  A n o d  finite-size scaling is not possible. 

The critical storage capacity a c ( N )  from figures 3(a)  (asterisks) and 

In order to see the effect of the genetic optimization more quantitatively, the 
simulations were repeated without the second part of the algorithm; that means the 
number of generations G was restricted to 1.  At the same time the number of starting 
vectors was increased to get comparable results; M was chosen M = NG:, where G: is 
the number of generations in the unresricted run at  cy,. In figure 3( b )  the corresponding 
stabilities are plotted against cy. Since the first pass through the adaptive algorithm 
takes more time than the later passes, simulations could not be carried out for N=255. 
Averaging for the remaining N could be done over 500 ( N  = 49) down to 200 ( N  = 
191) samples. Again the maximum storage capacity is taken as the intersection of a 
spline interpolation of the data and the line IC = 0. Now the cy values of the intersection 
points of both simulations are plotted in figure 4 against N - ' .  In the case of genetic 
optimization or unrestricted G (asterisks), the N-dependence is much weaker than 
in the case of no genetic optimization, or just one pass through the adaptive part 
(crosses). Instead of a dramatically decreasing storage capacity with growing N ,  CY, 

decreases more slowly with genetic optimization and stays above 0.7 for N 5 255. 
A finite-size scaling, i.e. a linear approximation of cy against N-7 is not possible for 
positive y.  That means that no prediction for cy, in the limit of infinite N can be 
given. For small N on the other hand, it seems that a, M 0.83. 

I have also investigated the field distribution for those J-vectors that had IC > 0. 
Figure 5 shows those field distributions for N = 63,127,191 and cy as close to a,(N) 
as possible. No significant N-dependence can be determined. A Gaussian fit curve, 
which is cut off at negative values, gives a good approximation for the type of the 
distribution. 

With the proposed algorithm it is possible to calculate binary perceptron coupling 
vectors or matrices for finite systems. The upper bound of the storage ca.pacity CY, = 
0.83  as calculated in [6] for N -+ 00, which also seems to hold for small N as shown 
in [7], can not approximately be reached for N exceeding M 50. 

Genetic optimization has been suggested previously for all kinds of problems, see 
for example [ll]. The kind of genetic optimization is different from the Darwinian 
program, because many good realizations of J-vectors are kept in a population and not 
only the fittest survive. In the model described there is a feed back from the phenotype 
space, which is associated with the space of local stabilities E", to the genotype 
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